Analysis of vertical wave number spectrum of atmospheric gravity waves in the stratosphere using COSMIC GPS radio occultation data
نویسندگان
چکیده
GPS radio occultation (RO) is characterized by high accuracy and excellent height resolution, which has great advantages in analyzing atmospheric structures including small-scale vertical fluctuations. The vertical resolution of the geometrical optics (GO) method in the stratosphere is about 1.5 km due to Fresnel radius limitations, but full spectrum inversion (FSI) can provide superior resolutions. We applied FSI to COSMIC GPS-RO profiles from ground level up to 30 km altitude, although basic retrieval at UCAR/CDAAC sets the sewing height from GO to FSI below the tropopause. We validated FSI temperature profiles with routine high-resolution radiosonde data in Malaysia and North America collected within 400 km and about 30 min of the GPS RO events. The average discrepancy at 10–30 km altitude was less than 0.5 K, and the bias was equivalent with the GO results. Using the FSI results, we analyzed the vertical wave number spectrum of normalized temperature fluctuations in the stratosphere at 20–30 km altitude, which exhibits good consistency with the model spectra of saturated gravity waves. We investigated the white noise floor that tends to appear at high wave numbers, and the substantial vertical resolution of the FSI method was estimated as about 100–200 m in the lower stratosphere. We also examined a criterion for the upper limit of the FSI profiles, beyond which bending angle perturbations due to system noises, etc., could exceed atmospheric excess phase fluctuations. We found that the FSI profiles can be used up to about 28 km in studies of temperature fluctuations with vertical wave lengths as short as 0.5 km. Correspondence to: T. Tsuda ([email protected])
منابع مشابه
Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation
The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In...
متن کاملAnalysis of Gravity Waves from Radio Occultation Measurements
In the height range 10-30 km atmospheric gravity waves lead to periodic perturbations of the background temperature field in the order of 2-3 K, which can be resolved in temperature profiles derived from radio occultation measurements. Due to the spherical symmetry assumption in the retrieval algorithm and the low horizontal resolution of the measurement weakening in the amplitude and phase shi...
متن کاملEffect of gravity waves on the tropopause temperature, height and water vapor in Tibet from COSMIC GPS Radio Occultation observations
The tropopause plays an important role in climate change, particularly in Tibet with complex topography and climate change system. In this paper, the temperature and height of the Cold Point Tropopause (CPT) in Tibet are obtained and investigated from COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) GPS Radio Occultation (RO) during June 2006–Feb 2014, which are c...
متن کاملGravity Waves and Ionospheric Irregularities over Tropical Convection Zones observed by GPS/MET Radio Occultation
GPS/MET observations of the tropical atmosphere of the southern hemisphere (5S to 25S) during February 1997 are analysed, when a high amount of convective tropospheric water vapor is at these latitudes. Enhanced gravity wave activity of the lower stratosphere at h=22-28 km is associated to areas of increased tropospheric water vapor pressure at h=4-6 km, regarded as a measure of tropical convec...
متن کاملOn the Signatures of Equatorial and Extratropical Wave Forcing in Tropical Tropopause Layer Temperatures
Temperatures in the tropical tropopause layer (TTL) play an important role in stratosphere–troposphere exchange and in the formation and maintenance of thin cirrus clouds. Many previous studies have examined the contributions of extratropical and equatorial waves to the TTL using coarse-vertical-resolution satellite and reanalysis data. In this study, the authors provide new insight into the ro...
متن کامل